Dermatophagoides farinae is an important house dust mite species that causes allergies in humans worldwide. In houses, these mites are commonly found in actively used mattresses and pillows, which provide food (i.e. sloughed skin and microorganisms), moisture, and increased temperature for faster mite development. In mattresses, feeding mites prefer the upper sector, as close as possible to the resting human (temperature 32–36 °C, humidity between 55 and 59%). However, mites that are not actively feeding prefer staying at deeper zones of the mattress. Here, we analyzed mite responses to different temperatures (15–35 °C) and relative humidity (62–94% RH) in terms of their population size growth and respiration (CO2 production) using lab mite cultures. The intrinsic rate of population increase had a single maximum at approximately 28 °C and 85% RH. At 30 °C, there were two respiration peaks at RH 90% (smaller peak) and 65% (larger peak). Therefore, there is a mismatch between the optimal temperature/humidity for the population size increase vs. respiration. We propose preliminary hypotheses explaining the two respiration peaks and suggest that future research should be done to elucidate the nature of these peaks.